(4v^2-3v-7)+(2v^2-5v+1)=

Simple and best practice solution for (4v^2-3v-7)+(2v^2-5v+1)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4v^2-3v-7)+(2v^2-5v+1)= equation:


Simplifying
(4v2 + -3v + -7) + (2v2 + -5v + 1) = 0

Reorder the terms:
(-7 + -3v + 4v2) + (2v2 + -5v + 1) = 0

Remove parenthesis around (-7 + -3v + 4v2)
-7 + -3v + 4v2 + (2v2 + -5v + 1) = 0

Reorder the terms:
-7 + -3v + 4v2 + (1 + -5v + 2v2) = 0

Remove parenthesis around (1 + -5v + 2v2)
-7 + -3v + 4v2 + 1 + -5v + 2v2 = 0

Reorder the terms:
-7 + 1 + -3v + -5v + 4v2 + 2v2 = 0

Combine like terms: -7 + 1 = -6
-6 + -3v + -5v + 4v2 + 2v2 = 0

Combine like terms: -3v + -5v = -8v
-6 + -8v + 4v2 + 2v2 = 0

Combine like terms: 4v2 + 2v2 = 6v2
-6 + -8v + 6v2 = 0

Solving
-6 + -8v + 6v2 = 0

Solving for variable 'v'.

Factor out the Greatest Common Factor (GCF), '2'.
2(-3 + -4v + 3v2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-3 + -4v + 3v2)' equal to zero and attempt to solve: Simplifying -3 + -4v + 3v2 = 0 Solving -3 + -4v + 3v2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1 + -1.333333333v + v2 = 0 Move the constant term to the right: Add '1' to each side of the equation. -1 + -1.333333333v + 1 + v2 = 0 + 1 Reorder the terms: -1 + 1 + -1.333333333v + v2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + -1.333333333v + v2 = 0 + 1 -1.333333333v + v2 = 0 + 1 Combine like terms: 0 + 1 = 1 -1.333333333v + v2 = 1 The v term is -1.333333333v. Take half its coefficient (-0.6666666665). Square it (0.4444444442) and add it to both sides. Add '0.4444444442' to each side of the equation. -1.333333333v + 0.4444444442 + v2 = 1 + 0.4444444442 Reorder the terms: 0.4444444442 + -1.333333333v + v2 = 1 + 0.4444444442 Combine like terms: 1 + 0.4444444442 = 1.4444444442 0.4444444442 + -1.333333333v + v2 = 1.4444444442 Factor a perfect square on the left side: (v + -0.6666666665)(v + -0.6666666665) = 1.4444444442 Calculate the square root of the right side: 1.201850425 Break this problem into two subproblems by setting (v + -0.6666666665) equal to 1.201850425 and -1.201850425.

Subproblem 1

v + -0.6666666665 = 1.201850425 Simplifying v + -0.6666666665 = 1.201850425 Reorder the terms: -0.6666666665 + v = 1.201850425 Solving -0.6666666665 + v = 1.201850425 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + v = 1.201850425 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + v = 1.201850425 + 0.6666666665 v = 1.201850425 + 0.6666666665 Combine like terms: 1.201850425 + 0.6666666665 = 1.8685170915 v = 1.8685170915 Simplifying v = 1.8685170915

Subproblem 2

v + -0.6666666665 = -1.201850425 Simplifying v + -0.6666666665 = -1.201850425 Reorder the terms: -0.6666666665 + v = -1.201850425 Solving -0.6666666665 + v = -1.201850425 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + v = -1.201850425 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + v = -1.201850425 + 0.6666666665 v = -1.201850425 + 0.6666666665 Combine like terms: -1.201850425 + 0.6666666665 = -0.5351837585 v = -0.5351837585 Simplifying v = -0.5351837585

Solution

The solution to the problem is based on the solutions from the subproblems. v = {1.8685170915, -0.5351837585}

Solution

v = {1.8685170915, -0.5351837585}

See similar equations:

| 0.10x+0.6(50-x)=.40*50 | | 2(3x-5)=11(x-15) | | (7x-7)(8x+1)=0 | | 4m+12= | | -12m^10*3m^3= | | 4b+75=983 | | 1.486x+x=0.2 | | 2x-7=137 | | -11(r-7)=-3(r+9) | | 16t^2-16t-192=0 | | 8(x+2)=5x-14 | | 32-2k=6k | | an=2.5+6(n-1) | | 12-d=40 | | 8[y+(-2x)]= | | -(10x+4)=-2(-8+5x) | | 3x^2=8y | | 37+12+14a-9=6a+11-14+5a | | 9x-8=6x+49 | | 5(-9x+6)+9=-4(12x-9) | | 3*-1-y=15 | | 3y+5=6 | | 7x+1=3+5x | | X+5-8x=28 | | 3*1-y=15 | | 8x-(4x-5)x=2 | | 3(x-8)+8=3x-8(8-x) | | 4x-(3x-2)=2(X-3)-X | | 3*0-y=15 | | 3(1-2)X-4=5-6(X+1) | | 5*x^2-17x-64=0 | | 9sin(4t)-14=-5 |

Equations solver categories